

DIGI-LOG[™] REVERB MODULE (BTDR-3)

A great digital reverb sound that easily replaces a spring reverberation unit

Pat. No. : US 8,204,240 CN ZL200880021110.9

Specifications

Features

- Reverb depth (decay) adjustable via 2 external resistors or 1 dual pot
- Stereo outputs may be summed for mono operation
- Simple interface: input, output, +5V, and ground
- AC-coupled input and outputs require no external capacitor

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	V
Supply Current	Icc		60	100	mA
Input Voltage	V _{IN}			1.5	V _{PEAK}
Voltage Gain			-3		dB(each output)
Residual Noise			-77	TBD	dBV
Input Impedance	Z _{IN}		10k		Ω
Output Impedance	Z _{OUT}		220		Ω
Operating Temperature		-40		+85	С

Subject to change without notice

DIGI-LOG[™] REVERB MODULE (BTDR-3)

Connection Diagram

1. +5V	6. Output 1
2. Power GND	7. Pot 1A
3. Input	8. Pot 1B
4. Signal GND	9. Pot 2A
5. Output 2	10. Pot 2B

Note : Pins 2 and 4 are internally connected. See the Application Circuit for more information on how to connect the grounds.

Dimensions

Applications

A regulated 5V supply is mandatory. An LDO regulator is recommended for battery-powered devices .

- The following example circuits are for instrument-level signals:
 - "Common" is "Signal GND" in a split-supply circuit or Vcc/2 in a single-supply circuit.
 - Audio noise during power-down can be minimized by quickly discharging supply from 5V to 0V; otherwise, external output muting may be necessary.
 - R1, R2 and C1 create a pre-EQ high-pass filter and may be adjusted to taste.
- The BTDR-3 was designed to work specifically with a 10k with a 10k pot, and consistent operation is not guaranteed with larger value.

DIGI-LOG[™] REVERB MODULE (BTDR-3)

Stereo Circuit

Mono Circuit

- High-pass frequency (Hz) =1/(π · C1 · R1)
- High frequency gain (dB) = $20 \cdot \log(2 \cdot R2/R1)$

DEPTH: 10kB DUAL C1 22nF R1 10k R2 22k 5V Q IN O \sqrt{N} \sim +5V 1A 1B 2A 2B 39k 10k OUT ١ΛΛ IN BTDR-3 $\Lambda \Lambda \Lambda$ OUT common O PGND SGND vçc 5\ 9 39k 5V REVERB LEVEL regulator -o out 10kB DUAL _ 220uF 47uf J common MΛ VΛΛ -O common 10k 39k

- High-pass frequency (Hz) = $1/(2\pi \cdot C1 \cdot R1)$
- High frequency gain (dB) = $20 \cdot \log(R2/R1)$

Considerations for FCC Compliance

- The maximum internal clock frequency is approximately 14MHz.
- Although Accu-Bell believes that circuits employing solely the BTDR-2 will easily pass FCC Part 15, no guarantees of compliance are made; the circuit must be tested as a whole for radiated and conducted emissions.

