# PNP - MJ15023, MJ15025\*

\*MJ15025 is a Preferred Device

# **Silicon Power Transistors**

The MJ15023 and MJ15025 are PowerBase power transistors designed for high power audio, disk head positioners and other linear applications.

#### **Features**

- High Safe Operating Area (100% Tested) –2 A @ 80 V
- High DC Current Gain  $h_{FE} = 15$  (Min) @  $I_C = 8$  Adc
- Pb-Free Packages are Available\*

#### **MAXIMUM RATINGS**

| Rating                                                                | Symbol                            | Value       | Unit      |  |
|-----------------------------------------------------------------------|-----------------------------------|-------------|-----------|--|
| Collector–Emitter Voltage MJ15023 MJ15025                             | V <sub>CEO</sub>                  | 200<br>250  | Vdc       |  |
| Collector-Base Voltage MJ15023 MJ15025                                | V <sub>CBO</sub>                  | 350<br>400  | Vdc       |  |
| Emitter-Base Voltage                                                  | V <sub>EBO</sub>                  | 5           | Vdc       |  |
| Collector–Emitter Voltage                                             | $V_{CEX}$                         | 400         | Vdc       |  |
| Collector Current – Continuous – Peak (Note 1)                        | I <sub>C</sub>                    | 16<br>30    | Adc       |  |
| Base Current – Continuous                                             | I <sub>B</sub>                    | 5           | Adc       |  |
| Total Device Dissipation @ T <sub>C</sub> = 25°C<br>Derate above 25°C | P <sub>D</sub>                    | 250<br>1.43 | W<br>W/°C |  |
| Operating and Storage Junction<br>Temperature Range                   | T <sub>J</sub> , T <sub>stg</sub> | -65 to +200 | °C        |  |

#### THERMAL CHARACTERISTICS

| Characteristics                      | Symbol          | Max  | Unit |
|--------------------------------------|-----------------|------|------|
| Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 0.70 | °C/W |

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.



#### ON Semiconductor®

# 16 AMPERES SILICON POWER TRANSISTORS 200 – 250 VOLTS, 250 WATTS



TO-204AA (TO-3) CASE 1-07 STYLE 1

#### **MARKING DIAGRAM**



MJ1502x = Device Code

x = 3 or 5

G = Pb-Free Package A = Assembly Location

Y = Year WW = Work Week MEX = Country of Origin

#### **ORDERING INFORMATION**

| Device   | Package             | Shipping         |
|----------|---------------------|------------------|
| MJ15023  | TO-204              | 100 Units / Tray |
| MJ15023G | TO-204<br>(Pb-Free) | 100 Units / Tray |
| MJ15025  | TO-204              | 100 Units / Tray |
| MJ15025G | TO-204<br>(Pb-Free) | 100 Units / Tray |

**Preferred** devices are recommended choices for future use and best overall value.

<sup>\*</sup>For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### PNP - MJ15023, MJ15025\*

#### **ELECTRICAL CHARACTERISTICS** (T<sub>C</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                                                                                            |                    | Symbol                | Min        | Max        | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|------------|------------|------|
| OFF CHARACTERISTICS                                                                                                                                                       |                    |                       |            |            |      |
| Collector–Emitter Sustaining Voltage (Note 2) $(I_C = 100 \text{ mAdc}, I_B = 0)$                                                                                         | MJ15023<br>MJ15025 | V <sub>CEO(sus)</sub> | 200<br>250 | _<br>_     | _    |
| Collector Cutoff Current $(V_{CE} = 200 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc})$ $(V_{CE} = 250 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc})$                          | MJ15023<br>MJ15025 | I <sub>CEX</sub>      | -<br>-     | 250<br>250 | μAdc |
| Collector Cutoff Current<br>( $V_{CE} = 150 \text{ Vdc}$ , $I_{B} = 0$ )<br>( $V_{CE} = 200 \text{ Vdc}$ , $I_{B} = 0$ )                                                  | MJ15023<br>MJ15025 | I <sub>CEO</sub>      | <u>-</u>   | 500<br>500 | μAdc |
| Emitter Cutoff Current (V <sub>CE</sub> = 5 Vdc, I <sub>B</sub> = 0)                                                                                                      | Both               | I <sub>EBO</sub>      | -          | 500        | μAdc |
| SECOND BREAKDOWN                                                                                                                                                          |                    |                       |            |            |      |
| Second Breakdown Collector Current with Base Forward Biased (V <sub>CE</sub> = 50 Vdc, t = 0.5 s (non-repetitive)) (V <sub>CE</sub> = 80 Vdc, t = 0.5 s (non-repetitive)) |                    | I <sub>S/b</sub>      | 5<br>2     | <u>-</u>   | Adc  |
| ON CHARACTERISTICS                                                                                                                                                        |                    |                       |            |            | 1    |
| DC Current Gain $(I_C = 8 \text{ Adc}, V_{CE} = 4 \text{ Vdc})$ $(I_C = 16 \text{ Adc}, V_{CE} = 4 \text{ Vdc})$                                                          |                    | h <sub>FE</sub>       | 15<br>5    | 60<br>-    | _    |
| Collector–Emitter Saturation Voltage ( $I_C = 8$ Adc, $I_B = 0.8$ Adc) ( $I_C = 16$ Adc, $I_B = 3.2$ Adc)                                                                 |                    | V <sub>CE(sat)</sub>  | -<br>-     | 1.4<br>4.0 | Vdc  |
| Base–Emitter On Voltage<br>(I <sub>C</sub> = 8 Adc, V <sub>CE</sub> = 4 Vdc)                                                                                              |                    | V <sub>BE(on)</sub>   | _          | 2.2        | Vdc  |
| DYNAMIC CHARACTERISTICS                                                                                                                                                   |                    |                       | 1          |            | 1    |
| Current-Gain - Bandwidth Product<br>(I <sub>C</sub> = 1 Adc, V <sub>CE</sub> = 10 Vdc, f <sub>test</sub> = 1 MHz)                                                         |                    | f <sub>T</sub>        | 4          | -          | MHz  |
| Output Capacitance<br>(V <sub>CB</sub> = 10 Vdc, I <sub>E</sub> = 0, f <sub>test</sub> = 1 MHz)                                                                           |                    | C <sub>ob</sub>       | _          | 600        | pF   |

<sup>2.</sup> Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2%.

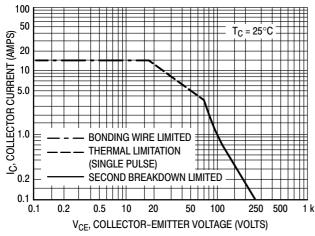
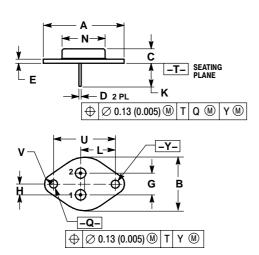



Figure 1. Active-Region Safe Operating Area


There are two limitations on the powerhandling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate  $I_C - V_{CE}$  limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on  $T_{J(pk)} = 200 \,^{\circ}\text{C}$ ;  $T_C$  is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

## PNP - MJ15023, MJ15025\*

#### **PACKAGE DIMENSIONS**

### TO-204 (TO-3) CASE 1-07 **ISSUE Z**



- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.
  3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

|     | INCHES    |       | MILLIN    | IETERS |
|-----|-----------|-------|-----------|--------|
| DIM | MIN       | MAX   | MIN       | MAX    |
| Α   | 1.550 REF |       | 39.37     | REF    |
| В   |           | 1.050 |           | 26.67  |
| С   | 0.250     | 0.335 | 6.35      | 8.51   |
| D   | 0.038     | 0.043 | 0.97      | 1.09   |
| E   | 0.055     | 0.070 | 1.40      | 1.77   |
| G   | 0.430 BSC |       | 10.92 BSC |        |
| Н   | 0.215     | BSC   | 5.46      | BSC    |
| K   | 0.440     | 0.480 | 11.18     | 12.19  |
| L   | 0.665 BSC |       | 16.89     | BSC    |
| N   |           | 0.830 |           | 21.08  |
| Q   | 0.151     | 0.165 | 3.84      | 4.19   |
| U   | 1.187 BSC |       | 30.15 BSC |        |
| V   | 0.131     | 0.188 | 3.33      | 4.77   |

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR