

DIGI-LOG[™] REVERB MODULE (BTDR-1)

A great digital reverb sound that easily replaces a spring reverberation unit

Pat. No. : US 8,204,240 CN ZL200880021110.9

Features

- Simple interface requires only input, output, +5V, and ground
- Available in horizontal or vertical mounting
- Pin-compatible with BTSE-16FX Digital Effector
- AC-coupled input and output require no external capacitors
- RoHS compliant

Specifications

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	V
Supply Current	I _{cc}		60	100	mA
Input Voltage	V _{IN}			1.5	V _{PEAK}
Voltage Gain			0		dB(>10kΩ load)
Residual Noise			-80	-72	dBV
Input Impedance	Z _{IN}		10k		Ω
Output Impedance	Z _{OUT}		220		Ω
Operating Temperature		-40		+85	С

Subject to change without notice

Available Options

Decay						
	S	М	L			
Туре	short	medium	long			
Time(T ₆₀)	2.0 s	2 <u>.</u> 5 s	2.85 s			

Digital **DIGI-LOG[™] REVERB MODULE (BTDR-1)**

Connection Diagram

- 3. GND (Signal)

- $7.V_{CC}$

- 4. V_{IN}
- Note Pins 3 and 5 are interually connected. It using a common ground for signal and power sypply, connected only pin 5 and leave pin 3 unconnected.

Dimensions

DIGI-LOG[™] REVERB MODULE (BTDR-1)

Application Circuit

- The value of R2 sets the proper input level to the BTDR-1. Set R2= $6.7k \Omega \cdot V_1$, where V_1 is the maximum peak voltage measured at node V_1 shown in the schematic above.
- C1 and R1 are optional and create a high-pass or shelf filter that attenuates the low frequency input to the reverb.
 - For a low shelf filter :
 - Set C1 = 1/(2 π \cdot R2 \cdot f_c), where f_c is the shelf frequency.
 - Set R1 = R2 \cdot (1-G_s)/G_s, where G_s is the shelf gain.
 - For a high-pass filter :
 - Set C1 =1/(2 π · R2 · f_c), where f_c is the cutoff frequency.
 - Omit R1 (R1 =0)
- Adjust R3 to limit maximum reverb level. R3 may be omitted for maximum reverb level.
- The use of a regulated 5V supply, such as a 78L05, is highly recommended. A ceramic bypass capacitor may be necessary between V_{cc} and GND if the regulator is not close to the reverb module.
- Audio noise during power-down can be minimized by quickly discharging supply from 5V to 0V; otherwise, external output muting is recommended.
- **Example** : Configure the circuit above for a shelf filter with fc=200 Hz and 10 dB attenuation when the Maximum voltage at V_1 =8 V_{PK} .
- R2=6.7kΩ · 8V=53.6kΩ
- C1=1/(2π · 53.6kΩ · 200Hz)≈0.015μF
- $G_s = 10^{(-10dB)/20} = 0.316$
- R1=53.6kΩ · (1-0.316)/0.316≈115kΩ

Considerations for FCC Compliance

- No high-frequency clocks are conducted outside of BTDR-1's internal ICs, minimizing emissions.
- Use of the BTDR-1V(vertical mounting) should lower conducted emissions, since it eliminates parallel signal paths between the BTDR-1, and main interface PC board
- No guarantees of FCC compliance are made for the BTDR-1, as it has not been tested for radiofrequency emissions, either radiated or conducted.

