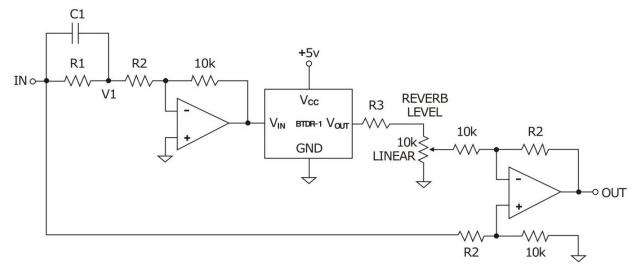


- 1. **V**_{OUT}
- 2. **V**_{OUT}
- 3. GND (Signal)
- 4. **V**_{IN}


- 5. GND (Power)
- 6. **N.C**.
- 7. **V**cc

Note: Pins 3 and 5 are internally connected. If using a common ground for signal and power supply, connect only pin 5 and leave pin 3 unconnected.

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	V
Supply Current	Icc		60	100	mA
Input Voltage	V _{IN}			1.5	V_{PEAK}
Voltage Gain			0		$dB(>10k\Omega load)$
Residual Noise				-72	dBV
Input Impedance	Z _{IN}		10k		Ω
Output Impedance	Zout		220		Ω
Operating Temperature		-40		+85	С

Subject to change without notice

Application Circuit

- The value of R2 sets the proper input level to the BTDR-1. Set R2=6.7k $\Omega \cdot V_1$, where V_1 is the maximum peak voltage measured at node V_1 shown in the schematic above.
- C1 and R1 are optional and create a high-pass or shelf filter that attenuates the low frequency input to the reverb.
 - o For a low shelf filter:
 - Set C1 = $1/(2\pi \cdot R2 \cdot f_c)$, where f_c is the shelf frequency.
 - Set R1 = R2·(1-G_s) / G_s, where G_s is the shelf gain.
 - For a high-pass filter:
 - Set C1 = $1/(2\pi \cdot R2 \cdot f_c)$, where f_c is the cutoff frequency.
- Adjust R3 to limit maximum reverb level. R3 may be omitted for maximum reverb level.
- ◆ The use of a regulated 5V supply, such as a 78L05, is highly recommended. A ceramic bypass capacitor may be necessary between V_{cc} and GND if the regulator is not close to the reverb module.
- Audio noise during power-down can be minimized by quickly discharging supply from 5V to 0V; otherwise, external output muting is recommended.

Example:

Configure the circuit above for a shelf filter with f_c = 200 Hz and 10 dB attenuation when the Maximum voltage at V_1 =8 V_{PK} .

- R2=6.7k Ω · 8V=53.6k Ω
- ♦ $C1=1/(2\pi \cdot 53.6k\Omega \cdot 200Hz) \approx 0.015 \mu F$
- \bullet G_s =10^{(-10dB)/20}=0.316
- R1 = $53.6k\Omega \cdot (1-0.316)/0.316 \approx 115k\Omega$

Considerations for FCC Compliance

- No high-frequency clocks are conducted outside of BTDR-1's internal ICs, minimizing emissions.
- Use of the BTDR-1V (vertical mounting) should lower conducted emissions, since it eliminates parallel signal paths between the BTDR-1 and main interface PC board.
- No guarantees of FCC compliance are made for the BTDR-1, as it has not been tested for radiofrequency emissions, either radiated or conducted.